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Abstract. We calculate the effective potential for the WLPNGB in a world with a circular latticized extra
dimension. The mass of the Wilson line pseudo-Nambu–Goldstone boson (WLPNGB) is calculated from
the one-loop quantum effect of scalar fields at zero and finite temperature. We show that a series expansion
by the modified Bessel functions is useful to calculate the one-loop effective potentials.

1 Introduction

It seems obvious that we live in a four-dimensional world.
Nevertheless, many theories for unification of forces
and/or matter in more dimensions than four have been
studied [1]. A simple possibility is that there is a fifth
dimension of very tiny size attached to every point of
our four-dimensional world. Such an extra dimension can
hardly be seen by virtue of its extraordinary smallness.

Last year, there appeared a novel scheme to describe
higher-dimensional gauge theories, called “deconstruction”
[2,3]. A number of copies of a four-dimensional theory
linked by new fields can be viewed as a single gauge the-
ory. The resulting whole theory may be almost equivalent
to a higher-dimensional theory with discretized extra di-
mensions.

Recently, Hill and Leibovich pointed out that the
Wilson line pseudo-Nambu–Goldstone boson (WLPNGB)
with low mass can be naturally obtained by deconstruct-
ing five-dimensional QED [4,5]. This WLPNGB may be
an important candidate for cosmological quintessence.

For a cosmological application, we should take the
finite-temperature effect into account. The behavior of the
WLPNGB field may vary along with the cosmological evo-
lution.

In this paper, we examine the U(1) gauge theory with a
discretized circle. We analytically obtain the effective po-
tential for the WLPNGB at zero and finite temperature.
In this paper, we consider the one-loop effect of charged
scalar bosons. Although this model appears unnatural in
contrast to the model with fermions [4,5], a similar tech-
nique is valid for the other models and the application to
various models will be studied elsewhere.
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In Sect. 2, our model is explained and the mass spectra
of the component fields are shown. In Sect. 3, the one-
loop quantum effect of scalar fields is calculated at zero
temperature. In Sect. 4, the one-loop quantum effect of
scalar fields is calculated at finite temperature. The final
section, Sect. 5, is devoted to our conclusions.

2 Model

We begin with the lagrangian for deconstructing (d+1+1)-
D scalar QED:

L =
N∑

k=1

1
g2

[
−1

4
Fµν

k Fk µν − (DµUk)†DµUk

]

+
N∑

k=1

[
−(Dµφ̃k)†Dµφ̃k

]

+ f
N∑

k=1

(√
2φ̃∗

kUkφ̃k+1 +
√

2φ̃∗
kU∗

k−1φ̃k−1 − 2fφ̃∗
kφ̃k

)

− m2
N∑

k=1

φ̃∗
kφ̃k , (1)

where

Fµν
k = ∂µÃν

k − ∂νÃµ
k , Dµφ̃k = ∂µφ̃k − iÃµ

k φ̃k (2)

and
DµUk = ∂µUk − iÃµ

kUk + iUkÃµ
k+1 . (3)

The labels of the fields are considered as periodic modulo
N , e.g., φN+1 ≡ φ1, φ0 ≡ φN , and so on. N is assumed
to be larger than (d + 1)/2. Usually, the dimension of the
space is taken as three. We leave the dimensions unfixed
because of the possibility of some combination of com-
pactification schemes in the very early universe.
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We assume that all Uk have a common absolute value
|Uk| = f/

√
2. Hence we can write

Uk =
f√
2

exp (iχ̃k/f) . (4)

It is convenient to use the “Fourier transformed” modes
for the fields:

Ãµ
k =

1√
N

∑
p

Aµ
p exp

[
2πi

pk

N

]
,

φ̃k =
1√
N

∑
p

φp exp
[
2πi

pk

N

]
, (5)

and

χ̃k =
1√
N

∑
p

χp exp
[
2πi

pk

N

]
. (6)

The fields Aµ
p (p �= 0) acquire masses by “absorbing”

the χp (p �= 0); the mass spectrum is given by

4f2 sin2
(πp

N

)
. (7)

For small p, this mass spectrum is approximately given by

f2
(

2πp

N

)2

, (8)

which is the Kaluza–Klein spectrum in the continuum the-
ory with the circle of the circumference L = N/f .

The masses of charged bosons are

M2
p = 4f2 sin2

(
πp

N
+

χ̄

2f

)
+ m2 , (9)

where χ̄ ≡ χ0/
√

N is a (classically) zero-mode scalar field.

3 The effective potential at zero temperature

3.1 The one-loop effective potential

In this section, we compute the quantum effect of the
scalar fields at zero temperature. The one-loop effective
potential for χ̄ is obtained by

ln det[−∇2 + M2
p (χ̄)] (10)

∼ − 1
(2π)d+1

∑
p

∫ ∞

0

dt

t

∫
dd+1k exp

[
−(k2 + M2

p )t
]

= − 1
(4π)(d+1)/2

∫ ∞

0

dt

t
t−(d+1)/2

∑
p

exp
[
−M2

p t
]

,

after an appropriate regularization.
Using the formula

exp
[
−4f2 sin2(θ/2)t

]
= e−2f2t

∞∑
�=−∞

cos �θ I�(2f2t)

= e−2f2t
∞∑

�=−∞
ei�θI�(2f2t) , (11)

where Iν(x) is the modified Bessel function, we can write
the effective potential as

V0(χ̄) = − 2
(4π)(d+1)/2

∑
p

∞∑
�=1

cos �θp I(�; m) , (12)

where
θp ≡ 2πp

N
+

χ̄

f
, (13)

and

I(�; m) =
∫ ∞

0

dt

t(d+3)/2 e−(2f2+m2)tI�(2f2t) . (14)

Here the term which is independent of χ̄ is discarded.
Carrying out the summation over p first, we find that

only the term of p = qN (q is an integer) is left. Then we
find

V0(χ̄) = − 2N

(4π)(d+1)/2

∞∑
q=1

cos(qNχ̄/f) I(qN ; m) . (15)

3.2 m = 0

First, we examine the case of m = 0 in detail. One can
find [6]

I(qN ; 0) = (4f2)
d+1
2

Γ
(

d+2
2

)
Γ
(
qN − d+1

2

)
√

πΓ
(
qN + d+1

2 + 1
) . (16)

Therefore the effective potential for the WLPNGB is writ-
ten as

V0(χ̄) = −
2NΓ

(
d+2
2

)
fd+1

π(d+2)/2 (17)

×
∞∑

q=1

Γ
(
qN − d+1

2

)
Γ
(
qN + d+1

2 + 1
) cos(qNχ̄/f) .

In particular, when d = 3, we obtain

V0(χ̄) = −3f4

2π2

∞∑
q=1

cos(qNχ̄/f)
q(q2N2 − 1)(q2N2 − 4)

. (18)

Turning back to the case with general d, we find that
the effective potential for a large N can be expressed as

V0(χ̄) = −
2Γ
(

d+2
2

)
π(d+2)/2Ld+1

[ ∞∑
q=1

cos(qLχ̄)
qd+2 (19)

+
(d + 1)(d + 2)(d + 3)

24N2

∞∑
q=1

cos(qLχ̄)
qd+4 + O(N−4)

]
,

where L ≡ N/f .
The mass of the χ0 field is derived from the effective

potential and turns out to be

m2
χ =

2Γ
(

d+2
2

)
g̃2

π(d+2)/2Ld−1 Z(d, N) , (20)

with
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Z(d, N) ≡
∞∑

q=1

q2Nd+2Γ
(
qN − d+1

2

)
Γ
(
qN + d+1

2 + 1
)

= ζ(d) +
(d + 1)(d + 2)(d + 3)

24N2 ζ(d + 2)

+O(N−4) , (21)

where ζ(s) is the Riemann zeta function and g̃ = g/
√

N .
Note that the kinetic term of χ0 includes the factor g̃−2.

Z(3, N) and Z(2, N) are plotted against N in Fig. 1.
It is safe to say that the approximation of the “large N
limit” is very good even for N ≈ 10.

3.3 m � f

For finite m, (14) reduces to [6]

I(qN ; m) = (2f2 + m2)
d+1
2

(
f2

2f2 + m2

)qN

×
Γ
(
qN − d+1

2

)
Γ (qN + 1)

× 2F1

(
qN − d+1

2

2
,
qN − d−1

2

2
; qN + 1;

4f4

(2f2 + m2)2

)

= md+1
(

f2

m2

)qN
Γ
(
qN − d+1

2

)
Γ (qN + 1)

× 2F1

(
qN − d + 1

2
, qN +

1
2
; 2qN + 1; −4f2

m2

)
, (22)

where 2F1 is the Gauss hypergeometric function.
In the large N limit, I(qN ; m) behaves as e−mqN/f

for large m. For finite N , however, I(qN ; m) approaches
zero not exponentially but with a power law. We find that
when m � f (22) reduces to

I(qN ; m) ∼ md+1
(

f2

m2

)qN
Γ
(
qN − d+1

2

)
Γ (qN + 1)

(m � f) . (23)

Thus we obtain

V0(χ̄) ∼ − 2md+1

(4π)(d+1)/2

(
f2

m2

)N
Γ
(
N − d+1

2

)
Γ (N)

cos(Nχ̄/f)

(m � f) . (24)

Correspondingly, the mass of the χ0 field reads

m2
χ ∼ 2g̃2md−1

(4π)(d+1)/2

(
f2

m2

)N−1
N2Γ

(
N − d+1

2

)
Γ (N)

(m � f) , (25)

which can be a very small value if we choose an appropri-
ate value for f/m. This fact suggests that the model can
bring about interesting models in a cosmological applica-
tion.
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Fig. 1. a Z(3, N) is plotted against N . The horizontal line in-
dicates ζ(3). The curve illustrates the approximated value up
to the order N−2. b Z(2, N) is plotted against N . The horizon-
tal line indicates ζ(2). The curve illustrates the approximated
value up to the order N−2

4 The effective potential
at finite temperature

4.1 The finite-temperature effective potential

We know that to study the finite-temperature effective
potential, the integration over the frequency is replaced
by the summation over the discrete Matsubara frequen-
cies (and attaching a certain factor) [7]. The free energy
density is then obtained:

F = − 1
(2π)dβ

∑
p

∞∑
n′=−∞

∫ ∞

0

dt

t

∫
ddk

× exp

{
−
[(

2π

β

)2

n′2 + k2 + M2
p

]
t

}

= − 1
(4π)(d+1)/2 (26)

×
∫ ∞

0

dt

t
t−(d+1)/2

∑
p

∞∑
n=−∞

exp
[
−M2

p t − β2n2

4t

]
,

where T = β−1 is the temperature. Obviously, the n = 0
term in the summation gives the effective potential at zero
temperature.

Now we write F in the form

F = V0(χ̄) + ∆V (χ̄) + F0 . (27)



428 N. Kan et al.: Deconstructing scalar QED at zero and finite temperature

Performing the summation over p, one can see that the
finite-temperature correction to the potential ∆V (χ̄) re-
sults in

∆V (χ̄) = − 4N

(4π)(d+1)/2

∞∑
q=1

cos
[
qN

χ̄

f

]
T (qN ; m) , (28)

and

F0 = − 2N

(4π)(d+1)/2 T (0; m) , (29)

where

T (�; m) =
∞∑

n=1

∫ ∞

0

dt

t(d+3)/2 (30)

× exp
[
−(2f2 + m2)t − β2n2

4t

]
I�(2f2t) .

Expanding the modified Bessel functions, we can carry
out the integration and obtain

T (qN ; m) = 2(2f2 + m2)(d+1)/2(f2/(2f2 + m2))qN

×
∞∑

r=0

(f2/(2f2 + m2))2r

r!Γ (qN + r + 1)

×
∞∑

n=1

(√
2f2 + m2βn

2

)2r+qN− d+1
2

× K2r+qN− d+1
2

(
√

2f2 + m2βn) , (31)

where Kν(z) is the McDonald function (or a modified
Bessel function of the second type).

4.2 The high-temperature limit

In the high-temperature limit β → 0, the summation over
n can be replaced by integration and the following approx-
imation is obtained:

T (qN ; m) ∼
√

π

β
(2f2 + m2)

d
2

×
(

f2

2f2 + m2

)qN
Γ
(
qN − d

2

)
Γ (qN + 1)

×2F1

(
qN − d

2

2
,
qN − d

2 + 1
2

; qN + 1;
4f4

(2f2 + m2)2

)

=
√

π

β
md

(
f2

m2

)qN
Γ
(
qN − d

2

)
Γ (qN + 1)

×2F1

(
qN − d

2
, qN +

1
2
; 2qN + 1; −4f2

m2

)
(β−1 � f, m) . (32)

There occurs nothing but the so-called dimensional reduc-
tion phenomenon in high-temperature field theory.

In the case of m = 0, the high-temperature limit leads
to

T (qN ; 0) ∼ 1
β

(4f2)
d
2
Γ
(

d+1
2

)
Γ
(
qN − d

2

)
Γ
(
qN + d

2 + 1
)

(β−1 � f) , (33)

and the effective potential becomes

V (χ̄) ≡ V0(χ̄) + ∆V (χ̄)

∼ −
2NΓ

(
d+1
2

)
fd

βπ(d+1)/2

∞∑
q=1

Γ
(
qN − d

2

)
Γ
(
qN + d

2 + 1
) cos(qNχ̄/f)

(β−1 � f) . (34)

Particularly, for d = 3,

V (χ̄) ∼ − 2f3

βπ2

∞∑
q=1

N cos(qNχ̄/f)
(q2N2 − 1/4)(q2N2 − 9/4)

(β−1 � f) (35)

is obtained. For general d and large N , we find

V (χ̄) ∼ −
2Γ
(

d+1
2

)
βπ(d+1)/2Ld

×
[ ∞∑

q=1

cos(qLχ̄)
qd+1 +

d(d + 1)(d + 2)
24N2

∞∑
q=1

cos(qLχ̄)
qd+3

+ O(N−4)
]

(β−1 � f) , (36)

where L ≡ N/f .
The mass of the χ0 field in the high-temperature limit

is

m2
χ ∼

2Γ
(

d+1
2

)
g̃2

βπ(d+1)/2Ld−2 Z(d − 1, N) (β−1 � f) , (37)

where Z(d, N) has been defined as (21).
In the case that β−1 � m � f , we find

T (qN ; m) ∼
√

π

β
md

(
f2

m2

)qN
Γ
(
qN − d

2

)
Γ (qN + 1)

(β−1 � m � f) , (38)

and this leads to

V (χ̄) ∼ − 2md

β(4π)d/2

(
f2

m2

)N
Γ
(
N − d

2

)
Γ (N)

cos(Nχ̄/f)

(β−1 � m � f) . (39)

The mass of the χ0 field is then

m2
χ ∼ 2g̃2md−2

β(4π)d/2

(
f2

m2

)N−1
N2Γ

(
N − d

2

)
Γ (N)

(β−1 � m � f) . (40)

The mass-square of the χ0 linearly increases with temper-
ature.
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4.3 Temperature dependence of the free energy

In the rest of this section, we investigate the leading tem-
perature dependence of the free energy. Though the con-
tribution of the gauge fields is of course present, we con-
centrate ourselves only on the contribution of the scalar
fields.

The dominant dependence on temperature can be
found in F0. Let us remember

T (0; m) = 2(2f2 + m2)(d+1)/2

×
∞∑

r=0

(f2/(2f2 + m2))2r

r!Γ (r + 1)

∞∑
n=1

(√
2f2 + m2βn

2

)2r− d+1
2

× K2r− d+1
2

(
√

2f2 + m2βn) , (41)

where we should notice that Kν(z) = K−ν(z).
At extremely high temperature (β−1 � f, m), the r =

0 term is dominant, and, using the limiting form for a
small argument Kν(z) ∼ 1

2Γ (|ν|)(z/2)−|ν|, one obtains

T (0; m) ∼
2d+1Γ

(
d+1
2

)
ζ(d + 1)

βd+1 (β−1 � f, m) . (42)

Then this leads to

F ∼ F0 ∼ −
2NΓ

(
d+1
2

)
ζ(d + 1)

π(d+1)/2βd+1 (β−1 � f, m) . (43)

This is precisely the free energy for N (effectively) mass-
less charged bosons. This behavior can be derived from
the original form of T (0; m):

T (0; m) =
∞∑

n=1

∫ ∞

0

dt

t(d+3)/2

× exp
[
−(2f2 + m2)t − β2n2

4t

]
I0(2f2t)

=
1

βd+1

∞∑
n=1

1
nd+1

∫ ∞

0

dt

t(d+3)/2 (44)

× exp
[
−(2f2 + m2)β2n2t − 1

4t

]
I0(2f2β2n2t) ,

with the limiting form I0(z) ∼ 1 for a small argument.
On the other hand, for β−1 	 f , (44) can be approxi-

mated, using I0(z) ∼ ez/
√

2πz for a large argument, by

T (0; m) ∼ 2√
4π fβd+2

∞∑
n=1

(
2βm

n

) d+2
2

K d+2
2

(βmn)

(β−1 	 f) . (45)

This leads to

F ∼ F0 ∼ − 4N

(4π)(d+2)/2 fβd+2

×
∞∑

n=1

(
2βm

n

) d+2
2

K d+2
2

(βmn)

(β−1 	 f) . (46)

Further, if we assume m 	 β−1, it is found that

T (0; m) ∼
2d+2Γ

(
d+2
2

)
ζ(d + 2)√

4π fβd+2

(m 	 β−1 	 f) . (47)

Then in this case,

F ∼ F0 ∼ −
2Γ
(

d+2
2

)
ζ(d + 2)

π(d+2)/2βd+2

N

f

(m 	 β−1 	 f) (48)

is obtained. This result coincides with the one of the finite-
temperature continuum Kaluza–Klein theory with circle
length L = N/f [8], after replacing the scalar degree of
freedom.

We have found that (−F ) behaves as T d+1 at high
temperature, while it behaves as T d+2 at lower tempera-
ture than f . This fact indicates that the dimension of the
spacetime seems d+2 for T < f and again d+1 for T > f .
Of course, at very low temperature T 	 f/N , as one can
see from (26) for m = 0 and χ̄ = 0,

F ∼ −
2Γ
(

d+1
2

)
ζ(d + 1)

π(d+1)/2βd+1 (β−1 	 f/N) . (49)

So we recognize the world as (d+1)-dimensional spacetime
with the lowest-mode field at very low temperature.

5 Conclusion

In conclusion, the effective potential for the WLPNGB in
scalar QED with a discretized dimension has been cal-
culated at zero and finite temperature. We have utilized
the expansion in terms of the modified Bessel functions,
which is also useful for computing the one-loop effect in
models with more discretized (or, latticized) dimensions
[9]. We have found that approximating the one-loop effect
by a large N expansion is valid if the model has a limiting
form of infinite N .

We have also found that the (mass)2 of the WLP-
NGB increases linearly with high temperature. This serves
to lead to some possibilities: Coherent oscillations of the
WLPNGB field may change the frequency according to
the expansion of the universe, or, if domain walls might
be produced, their mass density decreases as tempera-
ture decreases. Furthermore, the novel temperature de-
pendence of energy density may bring about interesting
consequences to the very early universe. These cosmolog-
ical implications will be clarified after analyzing more re-
alistic models and incorporating other matter fields.

We should consider the one-loop effect of fermions for
more natural particle theory. Moreover degenerate
fermions may largely affect the WLPNGB mass and the
entire potential. These subjects will be discussed else-
where [10].
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