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Abstract. We calculate the effective potential for the WLPNGB in a world with a circular latticized extra
dimension. The mass of the Wilson line pseudo-Nambu—Goldstone boson (WLPNGB) is calculated from
the one-loop quantum effect of scalar fields at zero and finite temperature. We show that a series expansion
by the modified Bessel functions is useful to calculate the one-loop effective potentials.

1 Introduction

It seems obvious that we live in a four-dimensional world.
Nevertheless, many theories for unification of forces
and/or matter in more dimensions than four have been
studied [1]. A simple possibility is that there is a fifth
dimension of very tiny size attached to every point of
our four-dimensional world. Such an extra dimension can
hardly be seen by virtue of its extraordinary smallness.

Last year, there appeared a novel scheme to describe
higher-dimensional gauge theories, called “deconstruction”
[2,3]. A number of copies of a four-dimensional theory
linked by new fields can be viewed as a single gauge the-
ory. The resulting whole theory may be almost equivalent
to a higher-dimensional theory with discretized extra di-
mensions.

Recently, Hill and Leibovich pointed out that the
Wilson line pseudo-Nambu—Goldstone boson (WLPNGB)
with low mass can be naturally obtained by deconstruct-
ing five-dimensional QED [4,5]. This WLPNGB may be
an important candidate for cosmological quintessence.

For a cosmological application, we should take the
finite-temperature effect into account. The behavior of the
WLPNGB field may vary along with the cosmological evo-
lution.

In this paper, we examine the U(1) gauge theory with a
discretized circle. We analytically obtain the effective po-
tential for the WLPNGB at zero and finite temperature.
In this paper, we consider the one-loop effect of charged
scalar bosons. Although this model appears unnatural in
contrast to the model with fermions [4,5], a similar tech-
nique is valid for the other models and the application to
various models will be studied elsewhere.
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In Sect. 2, our model is explained and the mass spectra
of the component fields are shown. In Sect.3, the one-
loop quantum effect of scalar fields is calculated at zero
temperature. In Sect.4, the one-loop quantum effect of
scalar fields is calculated at finite temperature. The final
section, Sect. 5, is devoted to our conclusions.

2 Model

We begin with the lagrangian for deconstructing (d+141)-
D scalar QED:
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The labels of the fields are considered as periodic modulo
N, eg., dON+1 = @1, 0 = ¢n, and so on. N is assumed
to be larger than (d + 1)/2. Usually, the dimension of the
space is taken as three. We leave the dimensions unfixed
because of the possibility of some combination of com-
pactification schemes in the very early universe.
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We assume that all Uy have a common absolute value

|Ux| = f/+/2. Hence we can write
U = jiexp (ixx/f) - (4)

It is convenient to use the “Fourier transformed” modes

for the fields:
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The fields A% (p # 0) acquire masses by “absorbing”
the x, (p # 0); the mass spectrum is given by
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For small p, this mass spectrum is approximately given by
21p 2
2
—_— 8
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which is the Kaluza—Klein spectrum in the continuum the-
ory with the circle of the circumference L = N/ f.
The masses of charged bosons are

M = 4f?sin’ ( + 2f> m?, (9)

where Y = xo/V'N is a (classically) zero-mode scalar field.

3 The effective potential at zero temperature
3.1 The one-loop effective potential

In this section, we compute the quantum effect of the
scalar fields at zero temperature. The one-loop effective
potential for y is obtained by
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after an appropriate regularization.
Using the formula
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where I,,(x) is the modified Bessel function, we can write
the effective potential as

_ 2
=1
where ) 2@ N X )
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and
T(t;m) = T_dt e 2f%) . (14)
’ - o tld+3)/2

Here the term which is independent of  is discarded.

Carrying out the summation over p first, we find that
only the term of p = ¢N (¢ is an integer) is left. Then we
find

2N
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First, we examine the case of m = 0 in detail. One can

find [6]
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Therefore the effective potential for the WLPNGB is writ-
ten as
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Turning back to the case with general d, we find that
the effective potential for a large N can be expressed as
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where L = N/ f.

The mass of the x¢ field is derived from the effective
potential and turns out to be
d
20 (52) 7
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with
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PN (gN — 451)
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where ((s) is the Riemann zeta function and § = g/v/N.
Note that the kinetic term of Y includes the factor §—2.

Z(3,N) and Z(2,N) are plotted against N in Fig. 1.
It is safe to say that the approximation of the “large IV
limit” is very good even for N = 10.

3 3m>f

For finite m, (14) reduces to [6]
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where o F} is the Gauss hypergeometric function. '
In the large N limit, Z(¢N;m) behaves as e~™aN//
for large m. For finite N, however, Z(qN;m) approaches

zero not exponentially but with a power law. We find that
when m > f (22) reduces to
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Correspondingly, the mass of the y( field reads
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which can be a very small value if we choose an appropri-
ate value for f/m. This fact suggests that the model can
bring about interesting models in a cosmological applica-
tion.
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Fig. 1. a Z(3, N) is plotted against N. The horizontal line in-
dicates ¢(3). The curve illustrates the approximated value up
to the order N2, b Z(2, N) is plotted against N. The horizon-
tal line indicates {(2). The curve illustrates the approximated
value up to the order N 2

4 The effective potential
at finite temperature

4.1 The finite-temperature effective potential

We know that to study the finite-temperature effective
potential, the integration over the frequency is replaced
by the summation over the discrete Matsubara frequen-
cies (and attaching a certain factor) [7]. The free energy
density is then obtained:
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where T = 37! is the temperature. Obviously, the n = 0
term in the summation gives the effective potential at zero
temperature.

Now we write F' in the form

F=Vo(x) +AV(X) + Fo - (27)
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Performing the summation over p, one can see that the
finite-temperature correction to the potential AV (Y) re-
sults in

4N o0 —
q:
and N
2
Fo = T @n@na T(0;m), (29)
where
0 dt
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Expanding the modified Bessel functions, we can carry
out the integration and obtain
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where K, (z) is the McDonald function (or a modified
Bessel function of the second type).

(31)

4.2 The high-temperature limit

In the high-temperature limit 8 — 0, the summation over
n can be replaced by integration and the following approx-
imation is obtained:
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There occurs nothing but the so-called dimensional reduc-
tion phenomenon in high-temperature field theory.
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In the case of m = 0, the high-temperature limit leads
to
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The mass of the xq field in the high-temperature limit
is
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In the case that 371 > m > f, we find
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The mass-square of the yg linearly increases with temper-
ature.
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4.3 Temperature dependence of the free energy

In the rest of this section, we investigate the leading tem-
perature dependence of the free energy. Though the con-
tribution of the gauge fields is of course present, we con-
centrate ourselves only on the contribution of the scalar
fields.

The dominant dependence on temperature can be
found in Fy. Let us remember

T(0;m) = 2(2f + m?) D12

_ d+41
% Z f2 2f2 +m 27‘ > \/W n :
rIl(r+1) —~
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where we should notice that K, (z) = K_,(z).
At extremely high temperature (37! > f,m), the r =

0 term is dominant, and, using the hmltmg form for a
small argument K, (z) ~ 2I'(|v])(2/2)~"!, one obtains
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This is precisely the free energy for N (effectively) mass-
less charged bosons. This behavior can be derived from
the original form of T (0;m):
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with the limiting form Iy(z) ~ 1 for a small argument.
On the other hand, for 37! < f, (44) can be approxi-

mated, using Iy(z) ~ e*/v/2mz for a large argument, by

d+2

2 = /26m)\ 2
'mmwwhwwg(n) K a2 (Bmn)
Br< ). (45)
This leads to
4N
B~ Fo ~ _(47r)(d+2)/2 fpRd+2
X 7; (2im> N K%(ﬂmn)
<. (46)

429
Further, if we assume m < 37!, it is found that
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Then in this case,
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is obtained. This result coincides with the one of the finite-
temperature continuum Kaluza—Klein theory with circle
length L = N/f [8], after replacing the scalar degree of
freedom.

We have found that (—F) behaves as T9*! at high
temperature, while it behaves as T%t2 at lower tempera-
ture than f. This fact indicates that the dimension of the
spacetime seems d+2 for T' < f and again d+1 for T' > f.
Of course, at very low temperature T < f/N, as one can
see from (26) for m =0 and ¥ =0,

2I' (4) ¢(d+1)

B~ = r(d+1)/2gd+1

(BN f/N). (49)
So we recognize the world as (d+1)-dimensional spacetime
with the lowest-mode field at very low temperature.

5 Conclusion

In conclusion, the effective potential for the WLPNGB in
scalar QED with a discretized dimension has been cal-
culated at zero and finite temperature. We have utilized
the expansion in terms of the modified Bessel functions,
which is also useful for computing the one-loop effect in
models with more discretized (or, latticized) dimensions
[9]. We have found that approximating the one-loop effect
by a large IV expansion is valid if the model has a limiting
form of infinite V.

We have also found that the (mass)? of the WLP-
NGB increases linearly with high temperature. This serves
to lead to some possibilities: Coherent oscillations of the
WLPNGB field may change the frequency according to
the expansion of the universe, or, if domain walls might
be produced, their mass density decreases as tempera-
ture decreases. Furthermore, the novel temperature de-
pendence of energy density may bring about interesting
consequences to the very early universe. These cosmolog-
ical implications will be clarified after analyzing more re-
alistic models and incorporating other matter fields.

We should consider the one-loop effect of fermions for
more natural particle theory. Moreover degenerate
fermions may largely affect the WLPNGB mass and the
entire potential. These subjects will be discussed else-
where [10].
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